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fter I wrote the paper “Differential Equations for High School Students”, I had it reviewed by several 
friends who are knowledgeable in differential equations and in mathematics in general.  They gave 

me a number of good suggestions relating to the paper, most of which have already been incorporated into 
the paper.  One of their suggestions was to remove the sections on logarithms because those sections were 
overly detailed, difficult to understand, and distracted from the main thrust of the paper.  They also felt 
that most high school students would be familiar enough with logarithms that they could understand the 
use of logarithms in the later section of the paper.  
 
I’ve taken their suggestions, which is why you’re reading this paper.   
 
I put this material in the original paper because I found it very interesting the way Briggs and others 
calculated logarithms before there were infinite series for the logarithm and before electronic calculators.  
People are clever, a statement which is true today as well back in the days when Briggs was first 
calculating the value of common logarithms, or when we were building the pyramids, for that matter. 
 
For those of you who make it through this material, I hope you find it as interesting as I did. 
 
 
 
 

A
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Logarithms 
 
 
 
 
 

t’s difficult for us, with our personal computers and hand-held calculators, to understand what a 
tremendous achievement the development of logarithms really was.  Prior to logarithms, calculations 

were extremely laborious, especially for people such as astronomers who needed to multiply and divide 
very large numbers.  With logarithms, multiplication of two numbers becomes an addition, and division 
becomes a subtraction (as will be explained later in this section).  Addition and subtraction are much 
easier than multiplication and division, and less prone to error.   
 
Even after logarithms, calculations were tedious but they were a lot less so.  Logarithms were commonly 
used until at least the mid 1970’s when low cost hand held calculators became popular.  
 
One common way of using logarithms was in the form of a slide rule, an accessory which unmistakably 
identified the university engineering students.  Figure 1 and Figure 2 are pictures of the author’s slide 
rule, used during his university studies. 
 

 
 

Figure 1: A slide rule uses logarithmic scales to perform multiplication and division.  Prior to 
the availability of low-cost calculators, this was the most popular calculating tool 
used by engineers and scientists.   

 

I
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Figure 2: Most engineering students used the same brand of slide rule.  But each student 

adjusted their slide rule differently, some with the slide very loose while others 
liked the slide tight.  When working together on a problem, sometimes we’d lose 
track of which slide rule was which.  To identify my slide rule, I had my initials 
(PMH) engraved on the rule.  I was a real geek – and maybe I still am!   

 
In discussing logarithms, I’m going to first discuss how logarithms work.  After that, I’ll discuss how 
logarithms were calculated in the 17th century. 
 
 

Working with Logarithms 
 
The basic insight that makes working with logarithms interesting is that when you multiple or divide 
numbers expressed as powers of a common base, you can just add or subtract the exponents.  Let’s 
examine this in more detail.  Let’s say that we have some numbers that are powers of 2, such as 4 and 8.  
4 can be expressed as 22 and 8 can be expressed as 23.  If we want to multiply these numbers, we can 
express this as 
 

y = 4 * 8 = 22 * 23  
 
We know from the law of exponents that when we multiply two numbers which have the same base, we 
just add the exponents. 
 

y = 4 * 8 = 22 + 3 = 25 = 32      
 
If we were to divide 4 by 8, we’d subtract the exponents. 
 

y = 4/8 = 22/ 23 = 22 - 3 = 2-1 = 1/2 
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In the general case, we can express this as 
 

y = bx * bz = bx + z     
 
and 
 

y = bx/bz = bx - z     
 
So how do we express all this in logarithms?  Let’s go back to our original example where we used 
powers of 2, and look at the number 8. 
 

y = 8 = 23  
 
If we were to take the log to the base 2 of both sides, this is what we’d get. 
 

log2 y = log2 8 = log2 23  
 
By taking the log to the base 2, we’re asking, “What power do we have to raise 2 to to equal 8?”  We 
know the answer is 3 but let’s look at the algebraic manipulations to get to that answer.  One “rule” of 
logarithms is that the log of a number to a power is equal to the power times the log.  So this gives us 
 

log2 8 = 3 log2 2  
 
Our task now is to evaluate log2 2.  The meaning of this is, “What power must 2 be raised to to equal 2?”  
The answer is 1 because 21 = 2.  So our result is 
 

log2 8 = 3   
 
There’s something very important that needs to be pointed out here.  To a very large degree, it doesn’t 
matter what the base b is.  Obviously, b cannot be zero or one.  A practical system requires that b be a 
positive real number greater than 1.  One of the most common values of b is 10.  Now, let us explore 
common (base ten) logarithms a bit more.   
 
The definition of a common logarithm is 
 

y ≡ 10log y    
 
That is, the common logarithm of a number is the power that 10 must be raised to to equal that number.  
The logarithm of 10 is 1 because 101 = 10.  The logarithm of 2 is about 0.301 because 100.301 = 2 
(approximately).   
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Computing the Value  
of Common Logarithms 
 
 
 
 
 

ohn Napier developed the concept of logarithms, and published a description of them in 1614.  
However, Napier did not use 10 as the base of his logarithms.  Henry Briggs, a friend of Napier, visited 

with Napier and they agreed that the base 10 would be a better choice.  Briggs began calculating the base 
10 logarithms, publishing common logarithms for the numbers 1 to 1,000 in 1617.  The question we 
address here is, “How did Briggs calculate these logarithms?” 
 
The process of taking square roots was well known by Briggs and others.  A very quick way to take a 
square root is the following iterative technique.  Let N be the number you want to take the square root of.  
Let a0 be your first guess of the square root (you can guess very roughly – the process will converge 
rapidly).  Your next guess should be computed based on the following equation. 
 

a1 = 0.5 * (a0 + N/ a0)     
 
For N = 10 and a first guess of a0 = 3, we find the following results. 
 

x ax ax
2 

0 3 9
1 3.166666667 10.02778 
2 3.162280702 10.00002 
3 3.16227766 10

 
Table 1: Convergence towards a square root.  The process 

converges very rapidly. 
 
So Briggs could compute 100.5 and any subsequent square roots (100.25, 100.125, etc.).  Expressed in 
fractional form, he could compute 10 to the 1/2, 1/4, 1/8, 1/16, 1/32, etc.   
 
Now, we can do these calculations much easier than Briggs by using a calculator or a spreadsheet, but 
let’s examine the values that Briggs would have calculated. 
 

J
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s in fractional form s in decimal form 10s 
1/1 1 10 
1/2 0.5 3.16227766 
1/4 0.25 1.77827941 
1/8 0.125 1.333521432 

1/16 0.0625 1.154781985 
1/32 0.03125 1.074607828 
1/64 0.015625 1.036632928 

1/128 0.0078125 1.018151722 
1/256 0.00390625 1.009035045 
1/512 0.001953125 1.004507364 

1/1,024 0.000976563 1.002251148 
1/2,048 0.000488281 1.001124941 
1/4,096 0.000244141 1.000562313 
1/8,192 0.000122070 1.000281117 

1/16,384 6.10352E-05 1.0001405485
1/32,768 3.05176E-05 1.0000702718
1/65,536 1.52588E-05 1.0000351353

1/131,072 7.62939E-06 1.0000175675
1/262,144 3.8147E-06 1.0000087837
1/524,288 1.90735E-06 1.0000043918

1/1,048,576 9.53674E-07 1.0000021959
1/2,097,152 4.76837E-07 1.0000010980
1/4,194,304 2.38419E-07 1.0000005490
1/8,388,608 1.19209E-07 1.0000002745

1/16,777,216 5.96046E-08 1.0000001372
1/33,554,432 2.98023E-08 1.0000000686
1/67,108,864 1.49012E-08 1.0000000343

1/134,217,728 7.45058E-09 1.0000000172
 

Table 2: Twenty-seven successive square roots of 10. 
 
And once you have successive square roots, you can calculate many other roots.  For example, if you 
need to know the value of 100.75, you can use 100.5 * 100.25 or 100.5+0.25.  Other roots can be found by 
addition and subtraction of existing powers (multiplication and division of values of 10s).  Let’s take a 
more complex example – find the common logarithm of 2. 
 
This is equivalent to the following equation: 
 

2 = 10x    
 
We want to solve for x.  Now if we look in the table, under the 10s column for the value just less than 2 
we see that it’s equal to the exponent 0.25, giving a value of 10s of 1.77827941.  We know that x is a bit 
more than 0.25 so let’s subtract 0.25 from x and examine the remainder.  Now, subtracting an exponent is 
equivalent to division of the 10s values. 
 

2/1.77827941 = 10x/100.25   
   
Note that 10x/100.25 = 10(x - 0.25).           
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2/1.77827941 = 1.12468265      

  
Now, we find the closest value for 10s that does not exceed 1.12468265, which is 10s of 1.074607828 
(s = 1/32).         
     
Rather than go through each of the calculations, I’m going to give you the exponent values. 
 

x = 1/4 +1/32 + 1/64 + 1/256 + 1/4096 (and we could keep going) 
 
Converting to a common denominator gives. 
 

 x = 1024/4096 +128/4096+ 64/4096 + 16/4096 + 1/4096 
 

x = 1233/4096 
 

x = 0.301025391 
 

2 = 100.301025391  (well, actually 1.999996 – if we 
kept going we’d get closer to a more 
accurate value of 0.301029996) 

 
So once Briggs had enough successive square roots of 10 (and 
the record indicates that he took 54 successive square roots), he 
was able to calculate essentially any number in terms of a 
power of 10. 
 
But taking 54 successive square roots is a lot of work – it’d be 
nice if there were a quicker way, or at least a fairly accurate 
approximation.  And Briggs (and others) found one.  Let’s see 
what they found. 
 
Suppose we look at the fractional part of the value of 10s, that 
is, subtract 1 from each value of 10s and see what remains.  
Suppose we further divide the fractional part by s, the exponent.  
Let’s see what happens. 
 
 

Logarithms of larger and 
smaller numbers 

Once we have the log of 2, we can 
use that result to obtain the 
logarithms of larger numbers.  For 
example, suppose we wanted to 
take the log of 20.   20 can be 
expressed as  
20 = 10 * 2  
or as powers of 10  
20 = 101 * 100.30102  
20 = 101+0.30102  
20 = 101.30102 

So the log of 20 is 1.30102… 

This is the primary advantage of 
logarithms to the base 10.  They 
allow you to easily find the 
logarithms of numbers larger than 
10 or smaller than 1 (but >0). 
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s as a fraction s as a decimal 10s 10s - 1 (10s – 1)/s 
1/1 1 10 9 9
1/2 0.5 3.16227766 2.16227766 4.32455532
1/4 0.25 1.77827941 0.77827941 3.11311764
1/8 0.125 1.333521432 0.333521432 2.668171457

1/16 0.0625 1.154781985 0.154781985 2.476511755
1/32 0.03125 1.074607828 0.074607828 2.387450506
1/64 0.015625 1.036632928 0.036632928 2.34450742

1/128 0.0078125 1.018151722 0.018151722 2.32342038
1/256 0.00390625 1.009035045 0.009035045 2.3129714794
1/512 0.001953125 1.004507364 0.004507364 2.3077704983

1/1,024 0.000976563 1.002251148 0.002251148 2.3051758519
1/2,048 0.000488281 1.001124941 0.001124941 2.3038799870
1/4,096 0.000244141 1.000562313 0.000562313 2.3032324186
1/8,192 0.000122070 1.000281117 0.000281117 2.3029087255

1/16,384 6.10352E-05 1.0001405485 0.0001405485 2.3027469017
1/32,768 3.05176E-05 1.0000702718 0.0000702718 2.3026659954
1/65,536 1.52588E-05 1.0000351353 0.0000351353 2.3026255437

1/131,072 7.62939E-06 1.0000175675 0.0000175675 2.3026053183
1/262,144 3.8147E-06 1.0000087837 0.0000087837 2.3025952056
1/524,288 1.90735E-06 1.0000043918 0.0000043918 2.3025901493

1/1,048,576 9.53674E-07 1.0000021959 0.0000021959 2.3025876211
1/2,097,152 4.76837E-07 1.0000010980 0.0000010980 2.3025863571
1/4,194,304 2.38419E-07 1.0000005490 0.0000005490 2.3025857247
1/8,388,608 1.19209E-07 1.0000002745 0.0000002745 2.3025854081

1/16,777,216 5.96046E-08 1.0000001372 0.0000001372 2.3025852516
1/33,554,432 2.98023E-08 1.0000000686 0.0000000686 2.3025851697
1/67,108,864 1.49012E-08 1.0000000343 0.0000000343 2.3025851399

1/134,217,728 7.45058E-09 1.0000000172 0.0000000172 2.3025851250
   

Table 3: Twenty-seven successive square roots of 10 and the fractional part 
divided by s. 

 
Based on these calculations, we can see that for small values of s, the value of 10s will equal 
approximately 1 + 2.3026s.  So once Briggs got past, say, the first 27 successive square roots, he could 
calculate the logarithm, to a good level of accuracy, for each of the next 27 successive square roots by just 
computing 1+2.3026s. 
 
Now, we have been using 10 as the basis for our logarithms but we now ask ourselves if there’s a better, 
more natural, base for our logarithms.  Specifically, we’d like to find a base, b, that allows us to 
approximate bs as 1 + s, for small s.  For those doing calculations back in the 17th century, this might 
make their work simpler.    
 
But they would still want to obtain logarithms to the base 10.  If we calculated the logarithms to a 
different base, can we convert them to another base, for example base 10?  Suppose we have logarithms 
to the base b and want to create logarithms to the base x.  How can we do that?   
 
Earlier, I gave the definition of a common logarithm, which was 
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y = 10log y    
 
Expressing this in general form,  
 

c = blog c    
 
Now, we want to compute the log of c to the base x.  Or, 
 

c = xlog c    
 
Let’s take the log to the base b of both sides. 
 

logb c = logb (xlog c)   
 
Since the log of a number to a power is equal to the power times the log,  
 

logb c = logx c * logb x   
 
Since what we want is the log of c to the base x, we solve for that. 
 

logx c = (logb c)/logb x   
 
The answer is that we divide all our existing base b logarithms by logb x.  A different, longer argument 
showing the same result is given in Appendix A. 
 
Let me give a specific example of this logarithmic base conversion.  Suppose we wanted to convert from 
logarithms to the base 10 to logarithms to the base 2.  Let’s take a simple base 10 log and convert it base 
2.  From our calculations above, we know that the logarithm of 3.1627766 is about 0.5 (this was the first 
square root of 10 that we calculated).  We also know that the log of 2 to the base 10 is about 
0.301029996.  According to our calculations, if we divide the log of 3.1627766, which is 0.5, by 
0.301029996, we will have the log of 3.1627766 to the base 2. 
 

Log2 3.1627766 = Log10 3.1627766 / Log10 2 
 

Log2 3.1627766 = 0.5/0.301029996 
 
Log2 3.1627766 = 1.660964046 

 
Which is quite close the actual value (the difference is due to the limited number of decimals in the value 
3.1627766.  The common log of that specific number is slightly greater than 0.5)  
 
Thus, once you have one set of logarithms, you can convert the logarithms to any other base, simply by 
dividing them by a constant.  So if we calculate our logarithms for some base other than 10, we can easily 
convert them to base 10, if we later want to. 
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Natural  
Logarithms 
 
 
 
 
 

arlier, I asked if there was a base that would allow us to estimate the logarithms of small exponents as 
1+ s, rather than 1 + 2.3026s.  But to make the terminology the same as used in the discussion above 

on changing the base of logarithms, and in Appendix A, let’s change our terminology.  For the (1 + 
2.3026s), we’re going to use (1 + 2.3026a), that is, a is the original logarithm (a = log10 c).  The (1 + s) 
term we will now call (1 + y) meaning that y is the logarithm to the new base (y = logx c).  We can 
convert from a to y by using the following equation. 
 

a = y/2.3026  
 
You can see this by substituting for a in the 1 + 2.3026a equation – we get 1 + y.  Rearranging the 
equation gives: 
 

y = a * 2.3026  
 
Now we remember, to convert logarithms from one base, b (and in this example, b = 10), to another base, 
x, we use this equation.  
 

logx c = logb c/logb x 
 
Substituting b = 10,  
 

logx c = log10 c/log10 x 
 
Earlier, we defined y = logx c and a = log10 c.  Therefore, 
 

y = a/log10 x 
 
And a few equations ago, we defined y to be   
 

y = a * 2.3026  
 
Equating the two equations 
 

a * 2.3026 = a/log10 x 
 
Dividing both sides by a,  
 

2.3026 = 1/ log10 x 

E
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log10 x = 1/2.3026 = 0.43429167 

 
So what we want to know is what number is represented by 
 

x = 100.43429167    
 
We can determine this number by repeated processing against Table 2 or Table 3, but I’m going to take 
the easy way and compute it on a calculator or spreadsheet.  The result is: 
 

x = 2.71826423    
 
This number1 is known as the natural number, and is 
represented by the letter e.  In logarithms, this base is 
known as the natural base2, or base e.  The definition of 
e is given by the following equation, as x goes to 
infinity. 
 

1 x
x

 lim (1 )
x

e


   

 
Now, e is just a number, but like π (which is also just a 
number), it has some very important properties, some 
of which are explored in the paper “Differential 
Equations for High School Students.” 
 
 

 
1 Actually, this value is not the real value of e.  This value is just an approximation. 
2 Natural logarithms are written ln x instead of log x, the n in ln indicating “natural”. 

Computing e with an infinite series 

e can also be computed with the infinite 
series  

e = 1 + 1/1! + 1/2! + 1/3! + 1/4! + … 
                                 (4! = 4 * 3 * 2 * 1) 

This is an excellent way to calculate the 
value of e quickly and accurately.  The 
“compound interest” equation given in 
the text will usually give an incorrect 
result beyond 5 to 6 digits when 
calculated with a spreadsheet or 
calculator because of rounding errors 
and the large powers.  When using an 
Excel spreadsheet, for example, 
thirteen terms of the above series gives 
the result 2.7182818284 which is 
accurate to 10 decimal places. 

Sixteen terms produces an answer 
accurate to 13 decimal places.   
2.7182818284590 
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Appendix A – Converting the base of 
logarithms 

 
 

ogarithms can be converted from one base to another quite easily.  For example, suppose we have a 
base b and want to calculate the log of some value c.  We write this as follows. 

 
c = ba          or     c = blogb c   (a = logb c) 
  

 
Which means that a is the logarithm of c to the base b.  Suppose that we now want to calculate the 
logarithm of c to some other base, which we’ll call x.   
 

c = xy            or  c =  xlogx c   (y = logx c) 
 
Here, we say that y is the logarithm of c to the base x.  How is y related to a?  Let’s investigate.  Since 
we’re assuming that both b and x are real numbers, each of a constant value, we can express x in terms of 
b. 
 

x = bk             or  x = blogb x   (k = logb x)  
 
Note that k is the logarithm of x to the base b.  Let’s substitute for x in the earlier equation, c = xy. 
 

c = (bk)y            or  c = (blogb x)logx c   
 

c = bky              or  c = b(logb x * logx c)     
 
But remember the equation we started off with? 
 

c = ba            or  c = blogb c     
 
Now, we substitute for c. 
 

ba = bky            or  blogb c = b(logb x * logx c) 
 
Which implies  
 

a = ky            or  logb c = logb x * logx c   
 
Solving for y 
 

y= a/k            or  logx c = logb c/logb x 
 
So to convert from one base to another, we simply divide our existing logarithms by a constant, which is 
the logarithm of the number we use for the new base, to the old base.  Specifically, we divide all our 
existing base b logarithms by logb x. 
 

L
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Appendix B – Logarithms of Negative 
Numbers 

 
hen I discussed logarithms earlier, I was careful to avoid situations where we might have to take 
the log of a negative number.  But is it possible to take the log of a negative number?  Let’s see. 

 
When we take the log of a positive real number, what we’re asked to do is to find a number that 10 can be 
raised to to give that number.  So if we were asked to find the log of 5, we’d ask, “What power can 10 be 
raised to to give the value 5?”  The answer is about 0.6989 
 
Now, suppose we were asked to take the log of -5.  What we’re asked to do is to find a number that 10 
can be raised to to give the value of -5.  But there’s no real number that will do that. 
 
Perhaps there’s a complex number that will solve this problem.  
 
 Log10 (-5) = ? 
 
Since we’re going to work with complex numbers, let’s convert to the natural log. 
 

 Log10 (-5) = 
ln൫െ5൯

ln 10  
 
Since -5 = 5*(-1) we can rewrite this as  
 

 Log10 (-5) = 
ln൫5ሻ൅ln ሺെ1൯

ln 10  

 
We can compute ln (5) so our challenge is to evaluate ln (-1).  Remember from the Differential Equations 
paper  
 
 𝑒௜గ ൌ െ1 
 
Therefore  
 
 lnሺ 𝑒௜గ ሻ ൌ ln ሺെ1ሻ 
 
But we know that the natural log of e is equal to the exponent so 
 
 iπ = ln (-1) 
 
And 
 

 Log10 (-5) = 
ln൫5ሻ൅𝑖𝜋൯

ln 10  
 
Giving  
 
 Log10 (-5) = 0.69897 ൅  1.36437𝑖 
 

W
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In the general case, for logs other than base 10,  
 

 Logb (-x) = 
ln൫𝑥ሻ൅𝑖𝜋൯

ln 𝑏  
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