

Forward Error Correction in Optical Networks

P. Michael Henderson

michael.henderson@cox.net

Agenda

• Why FEC?

- In-band SONET/SDH FEC
- Digital wrapper
 - Frame format
 - Overhead octets
- Summary

A companion white paper is available at <u>http://members.cox.net/michael.henderson</u>, titled "Forward Error Correction in Optical Networks."

Why FEC?

- Many different kinds of impairments affect optical transmission.
 - Chromatic dispersion.
 - Polarization mode dispersion.
 - Four wave mixing, and others.
- As rates are increased, many of these impairments become more pronounced.
- Without new technology, amplifier spacing might have to be decreased as we transition from OC-192/STM-64 to OC-768/STM256.
- Forward error correction is one technique which helps to mitigate this problem.

Status of FEC Work in the ITU

- A technique which adds FEC to SONET/SDH, while preserving the existing line rates, is covered in the revision to G.707.
 - Called "in-band" FEC, or the "rate preserving" technique.
- A technique which provides a payload rate equal to existing SONET/SDH rates, but which operates at a higher line rate, is covered in new recommendation G.709.
 - Called the "Digital wrapper" technique.
- The revised G.707 was ratified in October 2000. G.709 was approved at the February 2001 ITU meeting in Geneva.

P. Michael Henderson, michael.henderson@cox.net

In-Band FEC

- SONET/SDH frames are not a fixed size (except in time).
 - But, FEC codes apply to a specific number of bits or symbols.
- There are a limited number of available, unused overhead octets.
 - At the lowest rates, essentially none are available.
- Therefore, G.707 FEC only applies to OC-48/STM-16 line rates.
 - One row is 4320 octets, with 4176 payload octets
- Higher rates are handled by disinterleaving, taking 16 consecutive octets at a time.
- In-band FEC is not defined for rates below OC-48/STM-16.

Frame View for FEC Purposes (OH area on

Each bit in the first slice has a vector address S(a,b,c). The first A2 octet has address S(1,4,1)

In-Band FEC Code

- BCH-3 code chosen.
 - Utilizing a shortened version of a (8191,8152) parent code.
 - Covers 4320 bits, utilizing 39 redundant bits.
- BCH-3 code can correct three bits in error.
 - Eight way interleaving allows error burst of up to 24 bits to be corrected.
- Since each b in the address vector is only 16 bits, the 39 redundant bits are broken into three sets of 13 bits.
- Redundant bits are placed in the same row, or next row, to minimize delay.
 - Transmit time for each row is about 14 $\mu s.$ One row must be buffered on both encode and decode.

Location of the FEC Redundant Bits

Х

H3

FSI FEC

FEC

FEC

FEC

FEC

b = 9

FEC

FEC

FEC

FEC

FEC

6								
	A1	A1	A1	A2	A2	A2	JO	X
(a =	FEC			FEC		FEC		
hgh	FEC			FEC		FEC	FEC	FE
ts) h	H1	H1	H1	H2	H2	H2	H3	H3
>cte	\			FEC	FEC	FEC	FEC	FE
vs (c							FEC	FE
LOV							FEC	FE
Nine							FEC	FE
	FEC	FEC	FEC					
	b =1	b = 2	b = 3	b = 4	b = 5	b = 6	b = 7	b = 8
	16 bits wide							

Location of Redundant FEC bits

Row	(a, b) for a _n	(a, b) for a _n	(a, b) for a _n
	<u>26≤ n ≤ 38</u>	<u>13≤ n ≤ 25</u>	$0 \le n \le 12$
1	2,1	2,4	2,6
2	3,1	3,4	3,6
3	3,7	3,8	3,9
4	5,4	5,5	5,6
5	5,7	5,8	5,9
6	6,7	6,8	6,9
7	7,7	7,8	7,9
8	8,7	8,8	8,9
9	9,1	9,2	9,3

All a_n bits are in "c" address 4 through 16

Controlling FEC usage

- FEC Status Indicator (FSI) used to indicate use of FEC.
 - If receiver attempted to apply FEC when the transmitter was not utilizing it, serious errors would occur.
- FSI located at S(3,9,3).
 - Vector addresses one octet.
 - Bits 7 and 8 of this octet are used as the FSI indicator.
 - A value of 01 indicates FEC on, 00 indicates FEC off.
 - Values of 10 and 11 are invalid.
- Designed for hitless state change.
 - State change is indicated for 7 frames prior to switch.
 - Switch occurs on 8th frame.

BER Improvement with In-band FEC

Digital Wrapper

- The basic concept is to take payload octets and "wrap" them with a FEC.
 - Means that the line rate is higher than standard OC-N/STM-N.
- Basic building block is a Reed-Solomon code, specifically a RS(255,239) code.
 - Reed Solomon codes operate on symbols instead of bits. Here, a symbol is an octet (8 bits).
 - RS(255,239) code can correct up to 8 symbols in error or detect up to 16 symbols in error.
- RS codes are 16 interleaved to form a row.
 - Can correct an error burst of up to 128 octets.
- Four rows form a frame.

Digital Wrapper (continued)

- Three line rates have been defined.
 - Levels 1, 2, and 3, corresponding roughly to 2.5 Gbps, 10
 Gbps, and 40 Gbps.
- Payload rates are standard SONET/SDH rates.
 - Payload rate of level 1 signal is exactly OC-48/STM-16.
 - Payload rate of level 2 signal is exactly OC-192/STM-64, etc.
- Overhead is 17/255 (6.67%), 18/255 (7.06%) or 19/255 (7.45%).
 - However, payload is equal to standard SONET/SDH rates.
 - User may actually gain line speed if SONET/SDH is not used in G.709 payload.

Digital Wrapper Implementation

G.709 Performance Improvement

Input BER	Output BER
10-4	5 x 10 ⁻¹⁵
10 ⁻⁵	6.3 x 10 ⁻²⁴
10-6	6.4 x 10 ⁻³³

Source: ITU G.975

The output BER accounts for the BER loss due to the higher line rate

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1		Transport OH														
2													Pay-			
3	Data OH													au H		
4																•••

The G.709 overhead is divided into three areas: Transport, Data, and Payload

Transport Overhead

Data Overhead

		<u> </u>								1	1	1				
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1		Fra	ame a	alignm	nent (ЭН			Transport Specific OH							a\/_
2	RES TCM TCM6						-	TCM	CM5 TCM4 FTLT						ad	
3	-	тсм3		-	ГСМ2	CM2 T			1	PM			EXP		0	H
4	G	CC1	G	SCC2		APS	S/PC(C			RES					
														1		2

TTIi BIP-8i ΡM Path monitoring TTI Trail trace identifier TCM Tandem connection monitoring SAPI Source access point identifier RES Reserved for future standardization DAPI Destination access point identifier 6 7 5 1 2 3 4 8 ACT **BIP-8** Activation/deactivation control Bit interleaved parity -8 BDIi SAPI BEli STATi channel BEI Backward error indication 15 BDI FTFL Fault type & fault location **Backward Defect Indication** STAT for PM: 16 GCC General communication channel STAT Status indicator 001 Normal signal DAPI APS IAE Incoming alignment error Automatic protection & switching STAT for TCM 31 LCK Locked signal channel 32 001 In use w/o IAE Open connection indication PCC Protection communication control OCI 010 In use w/ IAE Alarm indication signal Operator channel AIS STAT Common: Specific 101 LCK

63

P. Michael Henderson, michael.henderson@cox.net

110 OCI

111 AIS

3

Tandem Connections

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1		Fra	ame a	alignn	nent (ЭΗ			Transport OH					RES	JC	D	D	
2														RES	JC	D	D	
3		Data OH											RES	JC	D	D		
4														PSI	NJO	PJO	D	

- PSI Payload structure identifier
- RES Reserved for future standardization
- JC Justification control
- NJO Negative justification opportunity
- PJO Positive justification opportunity
- D Payload data

Future Developments

- There are some things missing from G.709.
 - Multiplexing.
 - Automatic protection switching (APS), used for switching to protection fiber when failure occurs.
 - Data framing.
- Provisions have been made for multiplexing.
 - When a higher level signal carries a lower level signal, the redundant octets of the lower signal are not needed.
 - The one OH octet per RS subframe must be carried.
 - Means that 16 extra octets per row must be allocated for carrying next lower level traffic.

Multiplexing into Higher Rate Signals

Redundant RS octets are stripped off of lower rate signals, but OH octets remain. Therefore, 16 additional octets must be provided for each rate increment.

	15 16 16	7 1904	1905 : 1920	1921
1	RES JC	118 x 16D	16FS	119 x 16D
2	RES JC	118 x 16D	16FS	119 x 16D
3	RES JC	118 x 16D	16FS	119 x 16D
4	PSI NJO	15D + 117 x 16D	16FS	119 x 16D

Framing of a level 2 payload to allow for multiplexing

	15	16 17	1.264	1265	1281 	2545 	2561	3824
1	RES	<mark>)</mark>	78 x 16D	16FS	79 x 16D	16FS	79 x 16D	
2	RES	<mark>ר</mark>	78 x 16D	16FS	79 x 16D	16FS	79 x 16D	
3	RES	<mark>၂၂၂၂၂၂၂၂၂၂၂၂၂၂၂၂၂၂၂၂၂၂၂၂၂၂၂၂၂၂၂၂၂၂၂၂</mark>	78 x 16D	16FS	79 x 16D	16FS	79 x 16D	
4	IS d	PJO	15D + 77 x 16D	16FS	79 x 16D	16FS	79 x 16D	

FS = fixed stuff octets Framing of a level 3 payload to allow for multiplexing

Future Developments (continued)

- APS has not yet been defined.
 - This is a serious shortcoming which will surely be addressed in the next revision of G.709.
- Data framing is being defined.
 - Called "Generic Framing Procedure" (GFP). Will be G.7041.
 - Can be thought of a variable length ATM type of framing.
 - Header has header check octets and payload length. GFP frame delineation is similar to finding ATM header.

PLI = Payload length indicator HEC = Header error control (CRC-16)

P. Michael Henderson, michael.henderson@cox.net

Which to Choose?

- SO
- "One of the great things about standards is that there are so many to choose from".
- The in-band G.707 provides reasonable gain but uses overhead octets that may not be passed along by older equipment.
- G.709 provides higher gain but is all new and uses higher line rates.
- G.709 appears to be targeted at data traffic.
 - But data within SONET/SDH works fine.
- There can be little doubt that G.709 has been designed to replace SONET/SDH.

- Forward error correction will likely show its greatest value at the highest line rates.
- Two technologies are proposed in-band and digital wrapper.
- The market seems to be favoring the digital wrapper approach. I have not seen any announcements of inband FEC yet, but it's possible that future SONET framers will include it.

Summary

Questions?